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Abstract. The capillary broadening of a 2-phase interface is investigated both experimentally and theo-
retically. When a binary mixture in a thin film with thickness D segregates into two coexisting phases the
interface between the two phases may form parallel to the substrate due to preferential surface attraction
of one of the components. We show that the interfacial profile (of intrinsic width w0) is broadened due to
capillary waves, which lead to fluctuations, of correlation length ξ‖ of the local interface positions in the
directions parallel to the confining walls. We postulate that ξ‖ acts as an upper cutoff for the spectrum of
capillary waves on the interface, so that the effective mean square interfacial width w varies as w2 ∝ ln ξ‖.
In the limit of large D this yields w2 ∝ D or w2 ∝ ln D respectively for the case of short- or long-range
forces between walls and the interface. We used the Nuclear Reaction Analysis depth profiling technique,
to investigate this broadening effect directly in two binary polymer mixtures. Our results reveal that the
interfacial width indeed increases with film thickness D, though the observed interfacial width is lower
than the predicted w. This is probably due to surface tension effects imposed by the confining surfaces
which are not taken into account in our model.

PACS. 68.10.m Fluid surfaces and fluid fluid interfaces – 68.15.+e Liquid thin films – 68.45.Gd Wetting

1 Introduction

Over the past several years processes of phase separation,
wetting and dewetting in thin liquid films attracted atten-
tion in fields ranging from physics, and material science to
the pharmaceutical industry and gave rise to a plenitude
of theoretical [1–3], experimental [4–8] and Monte-Carlo
simulation studies [9,10]. A binary (AB) mixture with an
upper critical solution point Tc in the bulk will phase sep-
arate at T < Tc into two coexisting phases with concen-
trations φ1 and φ2, respectively. In a thin film geome-
try with different boundary conditions at the air/film and
film/substrate surfaces the interface between the two co-
existing phases may be stabilized parallel to the substrate.
This will occur whenever there is a sufficient preference of
one of the confining surfaces for one of the phases.

In a pioneering theoretical work Parry and Evans [1]
suggested that, in the temperature region between wet-
ting temperature Tw and the bulk critical temperature
Tcb of a binary mixture there should exist a kind of
“soft mode phase”. In this phase fluctuations along the
phase 1/phase 2 interface are characterized by an anoma-
lously large correlation length ξ‖ for concentration fluc-
tuations parallel to the confining walls of the thin film.
According to their treatment the correlation length ξ‖ of
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Fig. 1. Sketch of a cut through a thin phase-separated poly-
mer film of lateral size L indicating the length scales relevant in
our study. The interface (indicated in grey) between the two
coexisting phases φ1, φ2 of an intrinsic width w0 fluctuates
around its mean position. The correlation length for fluctua-
tions along this interface ξ‖ scales according to the theory of

Parry and Evans as ξ‖ = ξ0e
κD/4 with the overall film thick-

ness D.

the fluctuations along this freely fluctuating interface, for
the case of short-range forces between the walls and the
molecules in the mixture is given by

ξ‖ = ξ0 exp(κ D/4) (1)

where ξ0 is a length of the order of the bulk correlation
length ξb on the coexistence curve, D is the film thickness,
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Fig. 2. Sketch of depth pro-
files through two different thick,
phase separated samples. These
profiles are commonly assumed
to follow a tanh function as func-
tion of depth. The grey bars in-
dicate the sample/air and sam-
ple/substrate interfaces, where
the tanh profiles are cut off.
The difference between the cut-
off values of the profiles and the
bulk coexisting values φ1, φ2 are
labeled with ∆φ1 and ∆φ2 re-
spectively. By moving the mid-
point of the interface by a dis-
tance ∆z from its equilibrium
position the sum ∆φ1 +∆φ2 in-
creases. The comparison of the
thin and thick film shows, that
the sum increases faster for the
case of thinner films.

and κ−1 is a transverse length scale. A sketch with the rel-
evant length scales of the present study is shown in Fig-
ure 1. In the cases where mean field theory is valid [1] κ−1

can simply be set as ξb. In regions where it is no longer
valid [11,12] κ−1 gets enhanced by fluctuations. The in-
crease of fluctuations along the interface is demonstrated
in the simple model shown in Figure 2. The sketch shows
depth profiles φ(z) through two different, phase-separated
samples of different thicknesses. According to Helfand and
Tagami [13] and Binder [14] this profile is for the case of
small spatial variations of φ(z):

φ(z) =
1

2

{
(φ1 + φ2) + (φ1 − φ2) tanh

(
z − z0

w0

)}
(2)

with φ1, φ2 being the coexisting values, z0 the profile
midpoint and w0 the width of the interface. This profile
approaches only exponentially the coexisting values for
z → ±∞. Due to the finite thickness of a film this inter-
facial profile is cut off before it reaches φ1 or φ2, respec-
tively. As a result, one can model the effect of confinement
by a parabolic potential for the deviation ∆z of the inter-
face from the midpoint position, as the following argument
shows. In a gedankenexperiment we may move the profile
midpoint by a finite distance ∆z: φ(z′) = φ(z +∆z). One
of the cut off values of the profile will now be closer to
its coexisting value, but the second one will at the same
time be further apart from its coexisting value. Since we
are moving the interface away from the equilibrium posi-
tion this movement will always cost energy – similar to a
particle moving in parabola shaped potential. Comparing
the case of a thin and a thick sample (Fig. 2) illustrates
clearly, that in the case of the thinner sample the energy
loss for a given ∆z is bigger than in a thick sample. In
terms of a particle in a parabolic potential this transfers
to a much shallower potential for the thick film, or to
larger fluctuations assuming a fixed exciting energy. Thus

we qualitatively expect that the effective mean interfacial
width, which is a convolution of the intrinsic width w0 and
the broadening due to capillary waves, will increase with
increasing film thickness D. A brief report of this effect
has appeared earlier [15].

In this paper we investigate this finite-size effect both
experimentally and theoretically. In the following section
we describe the experimental approach by which we mea-
sure directly the width of the interface between two coex-
isting phases of (polymeric) liquids in a thin film geometry.
In Section 3 we review and develop the theory, making the
arguments more precise and quantitative. In the following
section our experimental results are compared with the
theoretical predictions and in the final section we summa-
rize and make some concluding remarks.

2 Experimental

2.1 Materials

The materials used for this study were random copoly-
mers, in each of which the monomers have structure
(−C4H8−) and (−C2H3(C2H5)−) randomly positioned
along the chains. These polymers were made by hy-
drogenation or deuteration of the precursor unsaturated
PBD chains as described in detail earlier [16,17]. Partial
deuteration was necessary for labeling in the depth profil-
ing method. The mean microstructure was [(C4H8)1−x −
(C2H3(C2H5))x]N (henceforth designated hx when proto-
nated and dx when deuterated, where x is in %). The
dependence of the interfacial width between coexisting
phases on the film thickness was studied from two differ-
ent mixtures of polyolefins. System 1 was a mixture of d75
and h66 with an initial concentration of φd75 = 0.60±0.01,
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Fig. 3. Experimentally determined phase coexistence diagrams (binodals) of the blends d75/h66 and d86/h75, as determined
by NRA [17]. From the binodal the bulk critical temperature for the d75/h66 blend is Tc,d75h66 = 101 ± 4 ◦C and Tc,d86h75 =
181 ± 4 ◦C for the d86h75 couple. The solid lines represent the best fits to the experimental data, calculated from the Flory-
Huggins model with a φ-dependent interaction parameter χ(T, φ) = (A/T + B)(1 + vφ). The interaction parameters are
χd75h66 = (0.371/T − 2.7× 10−5)(1 + 0.212φ) and χd86h75 = (0.559/T + 8× 10−5)(1− 0.057φ), respectively.

system 2 consisted of d86 and h75 with an initial con-
centration of φd86 = 0.50 ± 0.01. The degrees of poly-
merisation were N86 = 1 520, N75 = 1 625, and N66 =
2 066. The polymers were in all cases highly monodisperse
(Mw/Mn < 1.08). The bulk behaviour of both of the cou-
ples has been well characterized in earlier studies by Schef-
fold et al. [17,18]: bulk critical temperature, bulk criti-
cal volume fraction (of the deuterated component) and
interaction parameter are Tc = 181 ◦C, φc = 0.48, and
χ(T, φ) = (0.559/T + 8 × 10−5)(1 − 0.057φ), for the case
of the d86/h75 blend, and Tc = 101 ◦C, φc = 0.61, and
χ(T, φ) = (0.371/T − 2.7× 10−5)(1 + 0.212φ), for the case
of the d75/h66 blend. Phase coexistence curves (binodals)
determined earlier [17] for these two mixtures are shown in
Figure 3. Polished silicon wafers (P -type, 〈100〉 oriented,
6–13 Ω/cm obtained from the Institute of Electronic Ma-
terials Technology Warsaw) were used as supporting sub-
strate for the polymer films. The toluene used was either
Frutarum or Merck, analytical grade.

2.2 Sample preparation

Mixtures of above described couples were prepared in
toluene with volume fractions of φd86 = 0.50 ± 0.01 and
φd75 = 0.60± 0.01 for the d86h75 and d75h66 couples, re-
spectively, and spin-cast from the solution onto gold cov-
ered silicon wafers to create films of uniform thickness in
the range 150 to 1000 nm. By annealing these films under
vacuum (5 × 10−3 Pa) at a temperature T0 the films un-
dergo phase demixing driving their compositions towards
their coexisting values φ1 and φ2. The annealing tempera-
ture was T0,d86h75 = 140 ◦C and T0,d75h66 = 83 ◦C, for the
d86h75 and d75h66 couples, respectively. Annealing was
carried out, until steady state was achieved. In all sam-
ples measured we found the resulting coexisting values
(far from the interface) to agree within the scatter with

the coexistence curves shown in Figure 3 After annealing
the samples were quenched very rapidly to a temperature
(< −80 ◦C) below their glass transition temperature until
measured.

2.3 Experimental technique

High resolution Nuclear Reaction Analysis (NRA) [19,20]
was used to probe the depth-distribution profiles of the
deuterated polymer chains. In this method a monoener-
getic 3He beam is incident at low angle α on the polymer
sample, and undergoes the following reaction:

3He +2 H→4 He +1 H +Q, Q = 18.35 MeV. (3)

From the energy spectrum of the emitted particles, the
known energy losses, and reaction cross-section, the con-
centration profile φ(z) of the deuterated chains is directly
measured, as function of depth. The spatial resolution of
the method depends on the incident energy of the 3He
beam, the angle between beam and sample, on the depth
within the sample, and on the particles being detected. It
is highest at the sample surface. In these experiments we
detect protons at a backward angle (proton-NRA), as can
be seen in the sketch in Figure 4. The technique yields
a spatial resolution of 4 nm HWHM at the polymer/air
interface for an incoming 3He energy of 700 keV and an an-
gle of 8◦ between beam and sample, and stays better than
approximately 25 nm HWHM for depths up to 600 nm for
an incoming beam with energy 1.2 MeV under an angle of
14◦. Figure 5 shows typical depth resolution profiles δ(D)
of proton-NRA for different conditions of incident beam
energy E and incident angle α. These resolution profiles
were established by measuring single-component deuter-
ated films of different thicknesses, spincast on gold-coated
silicon wafers. Appropriate sets of conditions {E,α} were
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Fig. 4. The geometry of the proton-NRA setup used for depth
profiling the polymer films. The use of proton-NRA enables
us to achieve a resolution at the polymer / air surface of up
to 4 nm HWHM; the angle α between beam and sample was
typically in the range 4–14◦.
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Fig. 5. Typical depth resolution profiles δ(D) of proton-NRA
for different conditions of incident beam energy E and incident
angle α. These resolution profiles were established by measur-
ing single-component deuterated films of different thicknesses,
spincast on gold-coated silicon wafers. The incident energies
and angles were Ein,a = 700 keV, Ein,b = 900 keV, αin,a = 8◦,
and αin,b = 14◦, for curves a and b, respectively.

subsequently used to measure the interfacial widths at dif-
ferent depths in the two-phase films, so as to optimize the
high-resolution range. For each film of thickness D, a cri-
terion of confidence in the profile of the interfacial region
was that the resolution at the surface (z = 0) and that
at the solid interface (z = D) should match that of δ(D)
plot corresponding to the set of conditions {E,α} used.
Moreover, several of the samples were profiled using two
different sets of {E,α} giving always values for the inter-
facial width very close to each other.

Figure 6 shows two typical sets of depth profiles of
phase separated samples with different overall film thick-
nesses. The dotted lines are the theoretical profiles

φ(z) =
1

2
(φ1 + φ2 + (φ2 − φ1) tanh

(
(z − z0)/w

)
(4)

which are cut off at z = 0 and z = D, where z0 is the mean
interface position. Since the experimental profiles are to
some extent broadened by the system resolution δ(D) it
is necessary to convolute the theoretical profiles with the
independently determined depth-dependent resolution,
resulting in the profiles drawn with solid lines. The pro-
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Fig. 6. Typical composition depth profiles of d86/h75 films
annealed at T0 = 140 ◦C. A d86 rich phase at the air in-
terface (depth = 0) is coexisting with an d86 poor phase
on top of an silicon wafer, as recorded by Nuclear Reaction
Analysis (�). The dotted curves are the theoretical profiles
φ(z) = 1/2(φ1 + φ2 + (φ2 − φ1) tanh((z − z0)/w), where z0

is the midpoint of the interfaces between coexisting phases.
The solid lines are the best fit to the data obtained by con-
voluting the theoretical profiles with the independently deter-
mined depth dependent resolution δ(z). The resolution cor-
rected thicknesses of the shown profiles are D1 = 164 nm and
D2 = 728 nm. A comparison of the two profiles shows already
very clear the increase of the interfacial width with increas-
ing overall film thickness. The resolution-corrected interfacial
width w = 8.5 nm in the thinner film is significantly smaller
than the interfacial width w = 44.9 nm of the thicker film.

files shown are the result of fits minimizing the deviation
of the data points φdatai from the fitted curve φfiti

dev =
∑
i

(
φfiti − φ

data
i

)2

. (5)

We used for our fitting program the Hooke and Jeeves
non-linear optimization algorithm [21] in the implemen-
tation of Johnson [22]. As a further consistency check w
was also determined in a number of cases by quadrature
subtraction

w =
[
wm(D)2 − δ(Di)

2
]1/2

. (6)

Here wm(D) is the measured width of the interface at
depth Di in a film of thickness D, obtained by fitting
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to the as-measured profile, and δ(D) is the correspond-
ing resolution at that depth. The values of w determined
by these two approaches did always agree well with each
other.

3 Theory

In this section we assume that the interfacial profile results

from an “intrinsic” profile φ
(int)
A (z − z0) that is broad-

ened due to capillary waves, which lead to fluctuations of
the local interface positions in the directions parallel to
the confining walls. One describes this broadening by a

convolution of the intrinsic profile φ
(int)
A (z − z0) with a

Gaussian distribution P (z0) due to capillary waves [23]

φ(z) =

D/2∫
−D/2

dz0φ
(int) (z − z0)P (z0)

=

D/2∫
−D/2

dz0φ
(int) (z − z0)

1
√

2πs2
e−z

2
0/(2s2). (7)

Here s2 is the mean square width of the fluctuations of
the midpoint position z0 of the interface, i.e. s2 = 〈z2

0〉
(note that we take the z-axis in the center of the thin
films of thickness D, therefore 〈z0〉 = 0). For simplicity,
the intrinsic profile is approximated as an error function
profile with the same slope as the tanh profile at z = z0,

φ(int)(z) =
1

2

{
(φ1 + φ2) + (φ1 − φ2) tanh

(
z − z0

w0

)}
≈

1

2

{
(φ1 + φ2) + (φ1 − φ2) erf

(√
π

2

z − z0

w0

)}
.

(8)

This approximation describes the functional behaviour
very well over the range of interest [24]. We now define
the interfacial width w in terms of the maximum slope of
the profile φ(z), which is also the operative experimental
definition (Eq. (4))

w ≡ (φ2 − φ1) /

[
2
d

dz
φ(z)

∣∣∣∣
z=0

]
. (9)

Using equation (8) in equation (7) we find for D→∞,

w2 = w2
0 +

π

2
s2 (10)

where w0 is the intrinsic width of the interface. For poly-
mer mixtures that are not too far away from the criti-
cal point Tc the intrinsic width of the interface is simply
related to the bulk correlation length ξb, w0/2 = ξb. In
order to estimate s2, we invoke the theory of Parry and
Evans [1,11,25] who describe the confined interface within
the “sharp-kink”-approximation in the “soft-mode” phase

by the following Hamiltonian for the local interface posi-
tion z0(x, y), namely the capillary wave Hamiltonian in a
field due to the walls,

1

kbT
Heff {z0(x, y)} =

∫
dxdy

{
σ

2

[(
∂z0

∂x

)2

+

(
∂z0

∂y

)2
]

+ a0

[
T − Tc(D)

Tw

]
κ2z2

0 (x, y) e−
κD
2

}
· (11)

Here kb is Boltzmann’s constant, T absolute temperature,
σ ≡ Σ/kbT with Σ being the interfacial tension, and a0/σ
is a dimensionless constant of order unity. Tw is the wet-
ting transition temperature that the model is expected to
show for D → ∞, while for finite D rather an interface
delocalisation transition occurs for a critical temperature
Tc(D) slightly below Tw. The quadratic “potential” V (z0)
(second term of Eq. (11)) actually results from expand-
ing exponentially decaying potentials from the two walls,
Vwalls(z0) ∝ exp [−κ (D/2 + z0)] + exp [−κ (D/2− z0)],
which “penalize” any fluctuations of the interface far away
from its equilibrium position z0 = 0. Thus, equation (11)
presents a more quantitative origin of the parabolic poten-
tial anticipated in Figure 2. The decay constant κ−1 = ξb
in mean field [1] while more refined work has shown a
fluctuation correction [12]

κ−1 = ξb (1 + ω/2) , ω =
[
4πξ2

bσ
]−1

. (12)

Equation (11) looks like the Landau-Ginzburg-Wilson
Hamiltonian of phase transitions of a “spin field” z0(x, y)
in two dimensions. From this analogy one can directly in-
fer that (in a mean field treatment) the correlation ξ‖ can
be calculated as

ξ−2
‖ =

1

σ

(
∂2V (z0) /∂z2

0

)
z0=0

(13)

which yields

ξ‖ = κ−1eκD/4

√
σTw

2a0

(
T − Tc(D)

) · (14)

Given the fact that the constant a0 is not known for poly-
mer mixtures, and that the square root factor in equa-
tion (14) presumably is of order unity (because the tem-
perature T is not close to TC(D), which is near TW ), we
shall in the following ignore this square root factor alto-
gether and simply take ξ‖ ≈ κ

−1 exp(κ D/4). A computer
simulation of polymer mixtures where ξ‖ has been directly
determined [25] supports that this is a reasonable approx-
imation.

It now remains to calculate s2 = 〈z2
0〉 from equa-

tion (11). First we note that if V (z0) could be neglected
then we would have the simple capillary wave Hamilto-
nian (1/kbT )Hcw. This is straightforwardly handled in re-
ciprocal space and leads to the well-known logarithmically
divergent integral,

s2 =
1

2πσ

∫
dq

q
=

1

2πσ
ln

(
qmax

qmin

)
· (15)
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For a freely fluctuating interface (in the absence of fields
such as gravity), one takes cutoffs for the momentum in-
tegration qmax = 2π/ξb, qmin = 2π/L, where L is the lat-
eral linear dimension of the interface, to find (using also
Eq. (10))

s2 =
1

2πσ
ln

(
L

ξb

)
(w

2

)2

= ξ2
b +

1

16σ
ln

(
L

ξb

)
= ξ2

b

[
1 +

1

16ξ2
bσ

ln

(
L

ξb

)]
= ξ2

b

[
1 +

πω

4
ln

(
L

ξb

)]
(16)

where in the last step equation (12) was used. Equa-
tion (16) incorporates the well-known logarithmic diver-
gence of the interfacial width with the lateral linear di-
mension of the system.

For a confined interface, however, where the full Hamil-
tonian (Eq. (11)) must be used, it clearly does not make
sense to consider capillary waves of wavelengths larger
than the correlation length ξ‖, equation (14), as this is
the largest length over which a correlation in z0(x, y) can
persist. Basically the effect of the potential V (z0) in the
calculation of s2 is to provide a cut-off qmin = 2πξ‖ rather
than qmin = 2π/L (assuming that L� ξ‖). Consequently
we have from equation (15)

s2 =
1

2πσ
ln

(
ξ‖

ξb

)
=

1

2πσ
[(κD/4)− ln (κξb)] ≈

κD

8πσ
(17)

and equation (10) then yields, using again equation (12)

w2 = 4ξ2
b +

κD

16σ
= 4ξ2

b + πωξ2
b

κD

4

= 4ξ2
b +

πω

1 + ω/2

ξbD

4
· (18)

We now turn to the estimation of the constant ω. For the
polymer mixture d75h66 we estimate ξb ≈ 18.8 nm (see
next section) [26]. In order to estimate σ we simply take
the formula for symmetrical polymer mixtures [14]

σ ≈
2

3b2
√
N

(1− χcrit/χ)3/2 (19)

valid in mean field theory, using b ≈ 0.64 nm and
(1 − χcrit/χ) ≈ (1 − T/Tcb) ≈ 0.0481 at the temper-
ature of the experiment [15]. This yields (taking for N
the geometric mean of both chain lengths NA = 1 625,
NB = 2 030) ω ≈ 0.558, and the numerical factor in equa-
tion (18) πω/(1+ω/2) ≈ 1.37. In our preliminary commu-
nication [15], this factor was simply put to unity. In view
of the fact that σ is not independently known and equa-
tion (19) is probably a rather crude approximation, and
also ξb is known only somewhat imprecisely, the precise
estimation of this factor is a problem. We note that this
factor is temperature dependent, since ω is strongly tem-
perature dependent in the mean field critical regime [27]

ωMF = ω0 (1− χcrit/χ)−1/2 (20)
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Fig. 7. Capillary parameter ω as function of the interaction
parameter χ for the case of the d75h66 mixture. Close to χcrit
we expect a crossover from the mean field behaviour ωMF =
ω0(1−χ/χcrit)−1/2 to the Ising critical universal value ωIsing ≈
0.86. For larger χ, another crossover occurs towards the case
of strongly segregated interfaces. The error of the shown curve
(and thus also of the point marked “experiment”) is mostly due
to uncertainty in the critical surface tension, for which we have
taken the mean field result for a symmetrical polymer mixture.
We estimated this error is of the order of several percent.

and the prefactor ω0 for symmetrical polymer mixtures
is expected to scale with the chain length N as ω0 ∝
1/
√
N [27]. However, very close to χcrit, namely for

N(1 − χcrit/χ) � 1, we expect a crossover to the Ising
critical universal value ωIsing ≈ 0.86 [28], see Figure 7.
For larger χ, another crossover occurs towards the case of
strongly segregated interfaces, where one can infer from
the theory of Helfand et al. [13,29] that ω ≈ 6

√
6χ/π.

For the additional system d86/h75 studied in the present
paper we find ω ≈ 0.360 rather than ω = 0.460, and
πω/(1 + ω/2) ≈ 0.958, if ξb is estimated as ξb = 12.8 nm.

It should be stressed that the above treatment implies
that the surface-monomer interaction is of short range:
only then one finds an effective potential for an interface
at a distance l from the wall of the form V (l) ∝ exp(−κl).
Van der Waals interactions, however, would lead to a
power-law potential V (l) ∝ l−p where p is some expo-
nent — some support for this has been provided by a re-
cent study of of wetting dynamics in similar polymer mix-
tures [30] and by neutron reflectrometry measurements of
a polymer mixture in the strong segregation limit [31]. In
equation (11) this would mean that the term e−κD/2 is re-
placed by a term proportional to D−p, and the correlation
length ξ‖ gets a prefactor proportional to D(p/2+1) instead
of exp(κD/4). This would lead to a significantly weaker
increase of the interfacial width (ω2 ∝ (p/2 + 1) ln(D)
rather than ω2 ∝ D). Working out a formula analogous
to equation (18) for this long-range potential for the case
p = 3 yields

w2 = 4ξ2
b +

5π

2
ξ2
bω ln

(
D

2ξb

)
· (21)
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Fig. 8. Plot of the interfacial width w against the sample thick-
ness D for the two blend s of the olefinic copolymers d76h66
(a) and d86h75 (b) as described in the text, extracted from
profiles such as shown in Figure 6. The full lines show equa-
tion (18) and the broken lines show equation (21), using for
the capillary parameter ωd75h66 = 0.558 and ωd86h75 = 0.360.

4 Results

In Figure 6 typical composition depth profiles of two an-
nealed d86/h75 films with thicknesses (a) D1 = 164 nm
and (b) D2 = 728 nm can be seen. A comparison of the two
profiles shows already very clearly the increase of the in-
terfacial width with increasing overall film thickness. The
resolution-corrected interfacial width w = 8.5 nm (a) in
the thinner film is significantly smaller than the interfacial
width w = 44.9 nm (b) of the thicker film.

Figure 8 summarizes the data over the entire D range
studied for both couples together with the theoretically
predicted curves equation (18) (solid line) and equa-
tion (21) (dashed line). The values used for ξb and ω were
calculated according to the formulas valid for symmetric

polymer blends, and are summarized in Table 1. However,
as is shown in Table 1, the values obtained by applying
the theory for asymmetric polymer blends [14], are quite
comparable. The theoretical prediction of equation (18)
describes the qualitative behaviour of the data very well
and correctly predicts the order of magnitude of the ef-
fect. In the limit of D comparable to ξb the model calcu-
lations [25] predict a behaviour of w ∝ D, (see also next
section) which also can be seen in the experimental data
in the range of D between 150 and 750 nm. However, the
range of this approximately linear variation, namely up
to D ≈ 750 nm ≈ 22w0, is much larger than expected,
indicating that neither functional form, equation (18), or
equation (21) is very close. A point of interest is that al-
though the main qualitative feature, that the interfacial
width increases with D, is clearly observed, the actual
values are in all cases lower than the predicted ones. We
relate to this in more detail in the next section.

This large range of linear variation of w vs. D is some-
what larger than suggested in a recent Monte-Carlo study
of the bond fluctuation model of symmetric polymer mix-
tures [25]. For the sake of comparison, we reproduce some
of those data here (Fig. 9). This calculation refers to a
chain length NA = NB = N = 32, and as Figure 9a shows,
the segregation of the pure phases is complete at the tem-
perature chosen in the simulation (φ1 = 0, φ2 = 1), unlike
the experiment. Calculating the intrinsic width from the
self-consistent field theory as w0 = 4.65 lattice spacings,
and using the interfacial tension σ = 0.015 as found from
an independent simulation [25] (choosing the lattice spac-
ing as the unit of length), equation (18) can be worked
out without any adjustable parameters. We find that it
agrees with the simulation data for D ≥ 45 lattice spac-
ings (Fig. 9b), i.e. the regime of the initially stronger linear
variation w ∝ D in the simulation ends at D ≈ 10w0 al-
ready, whereas in the experiments it appears to be around
double that value.

In addition, we see in Figure 8 that the experimen-
tally determined interfacial width appears to saturate (i.e.
to become independent of D) for film thicknesses above
750 nm. The reason for this is, we believe, due to the fact
that the parallel correlation lengths becomes comparable
with the lateral dimensions of our samples. According to
classical capillary wave theory the lateral sample size Lmax
provides a further fixed upper cut-off for the spectrum of
capillary wave excitations (as earlier discussed). This im-
plies that from the point where Lmax < ξ‖(D) we cannot
expect a further increase of the interfacial width with in-
creasing film thickness, as can indeed be seen in our ex-
perimental data (Fig. 8, at D ≥ 800 nm). In practice we
might expect Lmax to take the value not of the sample
size (ca. 1 cm) but rather of the beam cross-section at
the sample, which is somewhat smaller, of order of mil-
limeters. Additional constraints arise at the lower D limit
when the films have thicknesses in the order of a chain coil
size. Clearly as the film becomes of thickness comparable
to ξb, it becomes meaningless to talk of interfacial widths
of this magnitude. Since this has not been taken into ac-
count for the model, we expect further deviations for the
case of film thicknesses D→ 0.



408 The European Physical Journal B

Table 1. Degree of polymerization N of the polymers used, critical temperatures Tcb and concentrations φcrit of the
two blends and coordinates in phase space (T, φ1, φ2), where the measurements were preformed, as well as the av-
erage statistical segment length b. From these values we calculated the bulk correlation length ξb according to ξb =

(b/6) /
√

1−φ
2NA

+ φ
2NB

− χSANS (φ)φ (1− φ), using χ (φ,T ) = χ0 (T ) (1 +Aφ) and χSANS (φ, T ) = χ0 (T ) (1−A+ 3Aφ), where

Ad75h66 = 0.212 and Ad86h75 = −0.057 for the d75h66 and the d86h75, respectively. This yields the values for the intrinsic
interfacial width w0 = ξb,1 + ξb,2 and the parameter ω. For a comparison we give additionally the values for ξ and ω, calcu-

lated with the formula for symmetric blends: ξsym = (b/6) (NANB)1/4 (1− χcrit/χ)−1/2 ≈ (b/6) (NANB)1/4 (1− T/Tc)
−1/2,

and ωsym =
[
2π (NANB)1/4 (1− T/Tc)

1/2 /27
]−1

.

system NA NB Tcb ( ◦C) T ( ◦C) φcrit φ1 φ2

d75/h66 1 625 2 030 101 83 0.61 0.39 0.77
d86/h75 1 520 1 625 181 140 0.48 0.24 0.73

system b (Å) ξb,1 (nm) ξb,2 (nm) w0 (nm) ω ξsym (nm) ωsym

d75/h66 6.4 18.4 19.2 37.6 0.558 20.7 0.460
d86/h75 5.8 12.7 12.9 25.6 0.360 12.8 0.360

5 Summary, discussion and conclusions

The present study reveals two main findings, underpinned
both by experiments and by theoretical and simulation
work. The first is that in a phase-separated sample in a
film of finite thickness D, where the inter-phase boundary
is parallel to the film, the width w of the interface is broad-
ened, due to capillary waves, to an extent which depends
on D. The qualitative reason for this film-thickness depen-
dence is as follows: larger excursions of the mean inter-
face position bring it closer to the confining surfaces, and
these cut off the interface profile thereby costing energy. A
given excursion thus costs less energy in a thicker film, and
hence thicker films are associated with larger values of w.
More quantitatively, one considers that the capillary waves
lead to fluctuations of the local interface positions in the
direction parallel to the confining walls. For short range
forces between the walls and the molecules of the mixture,
the correlation length ξ‖ for these concentration fluctu-
ations varies exponentially with D, ξ‖ = ξb exp(κD/4).
This correlation length may be considered as an upper
cut-off for the spectrum of capillary waves on this inter-
face (that is, as the effective maximum lateral dimension
of the capillary-broadened interface). Together with the
classical result that the mean square width of an interface
broadened by capillary waves increases as the logarithm of
its lateral dimension, this leads to a film thickness depen-
dence of the interfacial width. A more detailed theoreti-
cal treatment gives precise predictions. According to this
argument, the “intrinsic” interfacial profile width w0 (as
predicted by mean field theory, for instance) is not directly
observable, but is convoluted with the capillary broaden-
ing to yield w. We demonstrated by direct depth profiling
of thin phase separated polymer films that this kind of
effect indeed exists. This confirms experimentally a new
type of finite-size effect for the structure of interfaces in
layered phases. It is of interest that for sufficiently thick
films w appears to saturate, as would indeed be expected
whenever ξ‖ exceeds the macroscopic lateral dimension of

the sample (or, as in this case, the lateral dimension, of or-
der millimeters, of the experimental depth profile probe).

Our second main finding is that the magnitude of the
measured interfacial width is less than expected over the
entire range of the film thickness D. Both equations (18,
21), describing the interfacial broadening for short-range
or for long-range wall-molecule forces respectively, are
valid only asymptotically in the limit of very thick films,
D � w0, where w0 is the intrinsic interfacial width. In
this limit our model predicts w2 ∝ D. It is clear that for
ultra-thin films (where D < w0) the observed interfacial
width can never exceed the film thickness, and hence one
must have w ∝ D for very thin films. In practice, the
range of D over which this linear variation is roughly true
is surprisingly large. The simulations (Fig. 9) suggest that
the quasi-linear regime extends up to D ≈ 10w0, while the
experiments (with admittedly more scatter) show that an
approximately linear variation would be consistent with
the data even for thicknesses up to D ≈ 20w0 or so. In ad-
dition to the obvious effect noted above, arising when the
film thickness values are of order of the interfacial width
itself, there is an additional factor which may contribute
to the origin of such an effect, which was not taken into
account in our calculations. This is the higher surface ten-
sion associated with variation of the composition profile as
the interface excursions approach a confining surface: since
each surface “selects” the pure phase with which it prefers
to be in contact (thereby also leading to the layering par-
allel to the surfaces), any deviation from the pure phase
composition must lead to increase in the surface energy.
This additional factor would have the effect of suppressing
the broadening of the interface even further, and making
the measured width less than that predicted, as observed.

It is also of interest to compare in more detail the theo-
retical predictions and simulations with the experimental
results. With respect to the extent of broadening, where
the observed effects are less than predicted, there are a
number of conceivable reasons why the effect of the walls
in the experiment is stronger than in the simulation.



T. Kerle et al.: Finite thickness effects in thin films of coexisting phases 409

b)

a)

-2 0 -1 0 0 1 0 2 0
-1 .0

-0 .5

0 .0

0 .5

1 .0

 D  =  6 4

 D  =  4 8
 D  =  3 2
 D  =  1 6

 

z

m
(z

)

0 10 20 30 40 50 60 70
0

20

40

60

80

 

w
2

D

Fig. 9. (a) Order parameter profiles m(z) =
(
φA(z) −

φB(z)
)
/
(
φA(z) + φB(z)

)
plotted vs. z −D/2, for films of the

thickness D = 16, 32, 48 and 64 lattice spacings, walls being
situated at z = 0 and z = D. Data points are Monte-Carlo re-
sults for a symmetric polymer mixture, chain length N = 32,
T/Tc = 0.48. (b) Squared interfacial width w2 vs. D for a lat-
eral size L = 256. The straight line shows equation (18) (from
Werner et al. [25]).

(i) The latter considers the strong segregation limit,
and rather short chains, the walls are perfectly flat and
they are precisely “anti-symmetric” (i.e., the strength of
the wall potential attracting A-monomers on one side is
exactly the same as the strength of the wall potential at-
tracting B-monomers on the other side). Clearly such a
model is too idealized to describe the present experiments,
where the polymer/air and polymer/solid surfaces are nei-
ther ideally smooth nor symmetric in their potential.

(ii) The actual potential due to external boundaries
on a confined interface most probably is a combination
of strong short range forces and weaker long range van
der Waals forces. Direct evidence for this has come from
studies of both wetting dynamics in thin films [30], and of
interfacial structure [31]. It is not known how such forces
affect even the “intrinsic” thickness w0 of the interface.
In recent simulation work for short range forces [25,32] it
was shown that the effective interfacial tension σ(l) of an
interface at a distance l from a wall gets more enhanced
at smaller l, which leads to a corresponding reduction of
w0.

(iii) The parameters ξb, σ (and subsequently ω =
(4πξ2

bσ)−1) needed in equations (18, 21) are known only to
within some uncertainty (see e.g. values of ξb estimated us-
ing different approaches, in Tab. 1). In addition, all these
formulas are of a mean field character and break down
as T → Tc. Since our systems are studied at about 9%
or 5% below Tc, the crossover to the Ising model critical
behaviour could affect some of these estimates. This prob-
lem seems to be particularly severe for the parameter ω,
Figure 7, which approaches ωcrit ≈ 0.86 at Tc (this is be-
lieved to hold universally for all binary mixtures including
polymers), while our estimates for ω are smaller (note that
the strong segregation limit in Figure 7 presumably is a
lower bound on ω). Theoretical work would be desirable
to describe the temperature dependence of ω for polymers
more fully.

(iv) Since the length scale ξ‖ for large D becomes very
large, limitations due to the finite lateral extent of the
sample, as well as the question whether the annealing
time suffices to equilibrate long wave length fluctuations
on these large scales, may be a problem as well.

Despite these limitations, the theory is able to predict
the existence of the anomalous size-dependence of the in-
terfacial profile and its width qualitatively, and roughly
estimate the order of magnitude of the effect. Our experi-
mental data give clear evidence (Fig. 8) that under typical
conditions this effect is not small (w varies by a factor of 2
or 3 when D changes from 100 to 1000 nm) and there is no
clear way whereby the “intrinsic width” w0 could be read
off from such data. Thus the idea [33] that one can use
experiments of interfacial profiles in thin film geometry to
estimate the χ parameter of blends using theoretical for-
mulas for the intrinsic width w0 seems to be problematic.

Finally, we recall earlier studies of interfacial widths
between coexisting polymer phases in thin films, where
the capillary broadening effect was not considered [34–36].
These were mostly carried out for film thicknesses in the
range D = 500–600 nm, where — as seen in the present
study — the interfacial widths w (Fig. 6) are comparable,
or somewhat larger than the intrinsic widths w0. As a re-
sult of this study, and of the above discussion, the origin of
this is now clearer. It is of interest that the observed inter-
facial widths in these earlier [34–36] were indeed somewhat
larger in all cases than the mean field values w0.
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